Customization: | Available |
---|---|
Customized: | Customized |
Certification: | CE, ISO, RoHS |
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
DGXT plate heat exchanger
A plate heat exchanger is a type of heat exchanger that uses metal plates to transfer heat between two fluids. This has a major advantage over a conventional heat exchanger in that the fluids are exposed to a much larger surface area because the fluids are spread out over the plates. This facilitates the transfer of heat, and greatly increases the speed of the temperature change.
Plate heat exchangers are now common and very small brazed versions are used in the hot-water sections of millions of combination boilers. The high heat transfer efficiency for such a small physical size has increased the domestic hot water flowrate of combination boilers. The small plate heat exchanger has made a great impact in domestic heating and hot-water. Larger commercial versions use gaskets between the plates, whereas smaller versions tend to be brazed.
The concept behind a heat exchanger is the use of pipes or other containment vessels to heat or cool one fluid by transferring heat between it and another fluid. In most cases, the exchanger consists of a coiled pipe containing one fluid that passes through a chamber containing another fluid.
The walls of the pipe are usually made of metal, or another substance with a high thermal conductivity, to facilitate the interchange, whereas the outer casing of the larger chamber is made of a plastic or coated with thermal insulation, to discourage heat from escaping from the exchanger.
DGXT Design of plate and frame heat exchangers
The plate heat exchanger (PHE) is a specialized design well suited to transferring heat between medium- and low-pressure fluids. Welded, semi-welded and brazed heat exchangers are used for heat exchange between high-pressure fluids or where a more compact product is required.
In place of a pipe passing through a chamber, there are instead two alternating chambers, usually thin in depth, separated at their largest surface by a corrugated metal plate. The plates used in a plate and frame heat exchanger are obtained by one piece pressing of metal plates. Stainless steel is a commonly used metal for the plates because of its ability to withstand high temperatures, its strength, and its corrosion resistance.
The plates are often spaced by rubber sealing gaskets which are cemented into a section around the edge of the plates. The plates are pressed to form troughs at right angles to the direction of flow of the liquid which runs through the channels in the heat exchanger.
The plates are compressed together in a rigid frame to form an arrangement of parallel flow channels with alternating hot and cold fluids. The plates produce an extremely large surface area, which allows for the fastest possible transfer. Making each chamber thin ensures that the majority of the volume of the liquid contacts the plate, again aiding exchange. The troughs also create and maintain a turbulent flow in the liquid to maximize heat transfer in the exchanger. A high degree of turbulence can be obtained at low flow rates and high heat transfer coefficient can then be achieved.
As compared to shell and tube heat exchangers, the temperature approach (the smallest difference between the temperatures of the cold and hot streams) in a plate heat exchangers may be as low as 1 °C whereas shell and tube heat exchangers require an approach of 5 °C or more.
For the same amount of heat exchanged, the size of the plate heat exchanger is smaller, because of the large heat transfer area afforded by the plates (the large area through which heat can travel). Increase and reduction of the heat transfer area is simple in a plate heat-exchanger, through the addition or removal of plates from the stack.
DGXT Evaluating plate heat exchangers
All plate heat exchangers look similar on the outside. The difference lies on the inside, in the details of the plate design and the sealing technologies used. Hence, when evaluating a plate heat exchanger, it is very important not only to explore the details of the product being supplied but also to analyze the level of research and development carried out by the manufacturer and the post-commissioning service and spare parts availability.
An important aspect to take into account when evaluating a heat exchanger are the forms of corrugation within the heat exchanger. There are two types: intermating and chevron corrugations. In general, greater heat transfer enhancement is produced from chevrons for a given increase in pressure drop and are more commonly used than intermating corrugations.
There are so many different ways of modifications to increase heat exchangers efficiency that it is extremely doubtful that any of them will be supported by a commercial simulator. In addition, some proprietary data can never be released from the heat transfer enhancement manufacturers. However, it does not mean that any of the pre-measurements for emerging technology are not accomplish by the engineers. Context information on several different forms of changes to heat exchangers is given below.
The main objective of having a cost benefit heat exchanger compared to the usage of a traditional heat exchanger must always be fulfilled by heat exchanger enhancement. Fouling capacity, reliability and safety are other considerations that should be tackled.
First is Periodic Cleaning. Periodic cleaning (on-site cleaning) is the most efficient method to flush out all the waste and dirt that over time decreases the efficiency of the heat exchanger. This approach requires both sides of the PHE (Plate Heat Exchanger) to be drained, followed by its isolation from the fluid in the system. From both sides, water should be flushed out until it runs completely clear.
The flushing should be carried out in the opposite direction to regular operations for the best results. Once it is done, it is then time to use a circular pump and a solution tank to pass on a cleaning agent while ensuring that the agent is compatible with the PHE (Plate Heat Exchanger) gaskets and plates. Lastly, until the discharge stream runs clear, the system should be flushed with water again.
DGXT Optimization of plate heat exchangers
To achieve improvement in PHE's, two important factors namely amount of heat transfer and pressure drop have to be considered such that amount of heat transfer needs to be increased and pressure drops need to be decreased. In plate heat exchangers due to presence of corrugated plate, there is a significant resistance to flow with high friction loss. Thus to design plate heat exchangers, one should consider both factors.
For various range of Reynolds numbers, many correlations and chevron angles for plate heat exchangers exist. The plate geometry is one of the most important factor in heat transfer and pressure drop in plate heat exchangers, however such a feature is not accurately prescribed.
In the corrugated plate heat exchangers, because of narrow path between the plates, there is a large pressure capacity and the flow becomes turbulent along the path. Therefore, it requires more pumping power than the other types of heat exchangers. Therefore, higher heat transfer and less pressure drop are targeted. The shape of plate heat exchanger is very important for industrial applications that are affected by pressure drop.