• Oil Boiler Heat Exchanger
  • Oil Boiler Heat Exchanger
  • Oil Boiler Heat Exchanger
  • Oil Boiler Heat Exchanger
  • Oil Boiler Heat Exchanger
  • Oil Boiler Heat Exchanger

Oil Boiler Heat Exchanger

Customized: Customized
Certification: CE, ISO, RoHS
Sectional Shape: Square
Material: Stainless Steel
Transport Package: Wooden Case
Specification: Stainless Steel
Customization:
Gold Member Since 2019

Suppliers with verified business licenses

Shanghai, China
Importers and Exporters
The supplier has import and export rights
High Repeat Buyers Choice
More than 50% of buyers repeatedly choose the supplier
ODM Services
The supplier provides ODM services
OEM Services
The supplier provides OEM services for popular brands
to see all verified strength labels (9)

Basic Info.

Model NO.
304/316
Trademark
DGXT OR OEM
Origin
China
HS Code
84195000
Production Capacity
100000pieces/Year

Product Description

                                                                          Oil boiler heat exchanger


Indroduction

A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes.The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact. They are widely used in space heating, refrigeration, air conditioning, power stations, chemical plants, petrochemical plants, petroleum refineries, natural-gas processing, and sewage treatment. The classic example of a heat exchanger is found in an internal combustion engine in which a circulating fluid known as engine coolant flows through radiator coils and air flows past the coils, which cools the coolant and heats the incoming air. Another example is the heat sink, which is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant.

Oil Boiler Heat Exchanger
There are three primary classifications of heat exchangers according to their flow arrangement. In parallel-flow heat exchangers, the two fluids enter the exchanger at the same end, and travel in parallel to one another to the other side. In counter-flow heat exchangers the fluids enter the exchanger from opposite ends. The counter current design is the most efficient, in that it can transfer the most heat from the heat (transfer) medium per unit mass due to the fact that the average temperature difference along any unit length is higher. See countercurrent exchange. In a cross-flow heat exchanger, the fluids travel roughly perpendicular to one another through the exchanger.

Oil Boiler Heat ExchangerOil Boiler Heat ExchangerOil Boiler Heat Exchanger

Types


Double pipe heat exchangers are the simplest exchangers used in industries. On one hand, these heat exchangers are cheap for both design and maintenance, making them a good choice for small industries. On the other hand, their low efficiency coupled with the high space occupied in large scales, has led modern industries to use more efficient heat exchangers like shell and tube or plate. However, since double pipe heat exchangers are simple, they are used to teach heat exchanger design basics to students as the fundamental rules for all heat exchangers are the same.

1. Double-pipe heat exchanger

When one fluid flows through the smaller pipe, the other flows through the annular gap between the two pipes. These flows may be parallel or counter-flows in a double pipe heat exchanger.

(a) Parallel flow, where both hot and cold liquids enter the heat exchanger from the same side, flow in the same direction and exit at the same end. This configuration is preferable when the two fluids are intended to reach exactly the same temperature, as it reduces thermal stress and produces a more uniform rate of heat transfer.

(b) Counter-flow, where hot and cold fluids enter opposite sides of the heat exchanger, flow in opposite directions, and exit at opposite ends. This configuration is preferable when the objective is to maximize heat transfer between the fluids, as it creates a larger temperature differential when used under otherwise similar conditions.[citation needed]

The figure above illustrates the parallel and counter-flow flow directions of the fluid exchanger.

2. Shell-and-tube heat exchanger

In a shell-and-tube heat exchanger, two fluids at different temperatures flow through the heat exchanger. One of the fluids flows through the tube side and the other fluid flows outside the tubes, but inside the shell (shell side).

Baffles are used to support the tubes, direct the fluid flow to the tubes in an approximately natural manner, and maximize the turbulence of the shell fluid. There are many various kinds of baffles, and the choice of baffle form, spacing, and geometry depends on the allowable flow rate of the drop in shell-side force, the need for tube support, and the flow-induced vibrations. There are several variations of shell-and-tube exchangers available; the differences lie in the arrangement of flow configurations and details of construction.

In application to cool air with shell-and-tube technology (such as intercooler / charge air cooler for combustion engines), fins can be added on the tubes to increase heat transfer area on air side and create a tubes & fins configuration.
Oil Boiler Heat ExchangerOil Boiler Heat ExchangerOil Boiler Heat Exchanger
3. Plate Heat Exchanger

A plate heat exchanger contains an amount of thin shaped heat transfer plates bundled together. The gasket arrangement of each pair of plates provides two separate channel system. Each pair of plates form a channel where the fluid can flow through. The pairs are attached by welding and bolting methods. The following shows the components in the heat exchanger.

In single channels the configuration of the gaskets enables flow through. Thus, this allows the main and secondary media in counter-current flow. A gasket plate heat exchanger has a heat region from corrugated plates. The gasket function as seal between plates and they are located between frame and pressure plates. Fluid flows in a counter current direction throughout the heat exchanger. An efficient thermal performance is produced. Plates are produced in different depths, sizes and corrugated shapes. There are different types of plates available including plate and frame, plate and shell and spiral plate heat exchangers. The distribution area guarantees the flow of fluid to the whole heat transfer surface. This helps to prevent stagnant area that can cause accumulation of unwanted material on solid surfaces. High flow turbulence between plates results in a greater transfer of heat and a decrease in pressure.

4. Condensers and Boilers Heat exchangers using a two-phase heat transfer system are condensers, boilers and evaporators. Condensers are instruments that take and cool hot gas or vapor to the point of condensation and transform the gas into a liquid form. The point at which liquid transforms to gas is called vaporization and vice versa is called condensation. Surface condenser is the most common type of condenser where it includes a water supply device. Figure 5 below displays a two-pass surface condenser.



This  work  presents  the  design of  a  hot  oil heat  exchanger system wherein the heat exchanger and its associated pumping system is developed by employing engineering standards. An iterative mathematical approach is employed in the design of a hot  oil  concentric  tube  heat  exchanger  (HX).  The  actual conditions  of  the  hot  oil  system  from  a  chemical  plant  in Chattanooga,  TN  is  considered  in  this  analysis.  A mathematical model is developed such that the required heat exchanger's dimensions and flow requirements are deduced to necessitate  a  specified  heat  transfer.  Thereafter,  the development  of  a  pumping  system  for  the  hot  oil  heat exchanger is examined


Heat exchanger is an equipment used to transfer heat from a higher temperature fluid to a lower temperature fluid. Therein, a solid wall separates the two fluids. Heat exchangers can be classified  based  on  flow  and  construction.  Based  on construction, heat  exchangers can be  classified as  concentric tube  heat  exchangers,  shell  and  tube  heat  exchangers  and finned/unfinned  heat  exchangers.  Likewise,  based  on  flow, they can be classified as parallel flow, counter flow or cross flow.  The  choice  of  construction  and  flow  circuiting  are dictated  by  the  application  and  by  the  existing  piping connections available in the process plant.

Oil Boiler Heat ExchangerOil Boiler Heat ExchangerOil Boiler Heat ExchangerOil Boiler Heat Exchanger

The pressure of steam at the turbine outlet is low where the steam density is very low where the flow rate is very high. To prevent a decrease in pressure in the movement of steam from the turbine to condenser, the condenser unit is placed underneath and connected to the turbine. Inside the tubes the cooling water runs in a parallel way, while steam moves in a vertical downward position from the wide opening at the top and travel through the tube. Furthermore, boilers are categorized as initial application of heat exchangers. The word steam generator was regularly used to describe a boiler unit where a hot liquid stream is the source of heat rather than the combustion products. Depending on the dimensions and configurations the boilers are manufactured. Several boilers are only able to produce hot fluid while on the other hand the others are manufactured for steam production.

Oil Boiler Heat Exchanger



 

Send your message to this supplier

*From:
*To:
*Message:

Enter between 20 to 4,000 characters.

This is not what you are looking for? Post a Sourcing Request Now