Customization: | Available |
---|---|
Customized: | Customized |
Certification: | CE, ISO, RoHS |
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
Heat pipes are constructed of metal pipes made of copper, aluminum or other metals with high thermal conductivity, sealed inside which is a small amount of liquid called a working fluid (e.g., pure water) and a capillary structure (wick). A vacuum is created inside so as to seal in the working fluid and its vapor, and to facilitate the vaporization and condensation process.
When one end of the heat pipe is situated to be in contact with a heat source, its working fluid evaporates, absorbing latent heat in the process, and the resulting vapor moves to a lower temperature section of the pipe. The working fluid in the area with the relatively low temperature condenses, releasing the heat, and returns to liquid form. This is the mechanism by which heat is carried (i.e., transferred) from a high-temperature are to a low-temperature area. This working fluid that had condensed into liquid form returns to the heat source through the wick by the process of capillary action. This cycle of vaporization, liquefaction and transfer of the working fluid occurs very rapidly and continuously. The system requires neither power nor maintenance, incurs no operation costs, and can operate for long periods of time.
The Variations of Heat Pipes
Heat pipes have been generally constructed in the shape of long, thin cylinders (tubes) of a certain size, but as the recent trend in electronic devices has been to become ever smaller, thinner, and lighter, we are seeing more instances of heat pipes that are being produced with compact and thin (flattened like a squished pipe) shapes. In general, factors that contribute advantageously to the ability to carry heat are a large pipe diameter, being rounder rather than flattened, and being unbent rather than bent, but the larger the pipe, the more space it takes up and the heavier it is. It is wise to choose the product that is the most optimal for considerations such as the heat generated by the heat source, and the specific application. Here are some of the variations of heat pipes.
Variations of Pipe Materials
Copper pipe
Copper pipe is easily bent and flattened in the manufacturing process
Products in a large variety of sizes are easily obtainable
Aluminum pipe
Light in weight as aluminum itself is lighter than copper
Even easier to process in manufacturing than copper
Stainless steel pipe
Can be used with naphthalene working fluid
Slightly difficult to process in manufacturing due to being heavier than copper and aluminum
Another Value Proposition of Vapor Chambers Over Heat Pipes
Heat Pipes and Vapor Chambers operate using the same fundamental working principle and they have a similar thermal conductivity, but the metal pipe composition of Heat Pipes makes them a little bit difficult to incorporate inside tight spaces, and their heavy weight makes them undesirable for electronic devices that need to be as light as possible. This is where Vapor Chambers have an advantage. They are light in weight, and with a thickness of less than 1mm, they can be very thin.
Vapor Chambers are thin sheet-like heat dissipation components made of metal. They have very high thermal conductivity and their operating principle is the same as that of heat pipes. Generally, Vapor Chambers that employ meshes have a fine capillary structure (wick) contained inside that is filled with a working fluid such as pure water. The internal capillary structure of DNP's Vapor Chamber, on the other hand, is characterized by having a form that is made to be extremely fine and precise by means of using etching technology. When one end of a Vapor Chamber is situated to be in contact with a heat source, its working fluid evaporates, absorbing latent heat in the process, and the resulting vapor moves to a lower temperature area where it releases the heat and returns to liquid form. This working fluid returns to the heat source through the wick by the process of capillary action. This cycle is very short and continuous, and requires not external power.
Flue gas heat exchanger for steam boilers
With the effective recovery of flue gas heat, you can save up to 14% on fuel and, at the same time, reduce emissions. A flue gas heat exchanger, also called an economiser, is part of the standard equipment for energy-optimised and environmentally friendly boiler operation.