Stove Pipe Heat Exchanger

Product Details
Customization: Available
Customized: Customized
Certification: CE, ISO, RoHS
Gold Member Since 2019

Suppliers with verified business licenses

Audited Supplier

Audited by an independent third-party inspection agency

Importers and Exporters
The supplier has import and export rights
High Repeat Buyers Choice
More than 50% of buyers repeatedly choose the supplier
ODM Services
The supplier provides ODM services
OEM Services
The supplier provides OEM services for popular brands
to see all verified strength labels (9)
  • Stove Pipe Heat Exchanger
  • Stove Pipe Heat Exchanger
  • Stove Pipe Heat Exchanger
  • Stove Pipe Heat Exchanger
  • Stove Pipe Heat Exchanger
  • Stove Pipe Heat Exchanger
Find Similar Products

Basic Info.

Model NO.
SS316
Sectional Shape
Square
Material
Stainless Steel
Transport Package
Wooden Case
Specification
Stainless Steel
Trademark
DGXT OR OEM
Origin
China
HS Code
84195000
Production Capacity
100000pieces/Year

Product Description

                                                                Stove pipe heat exchanger
 

 Heat Exchanger


Put simply, a heat exchanger is a device which transfers heat from one medium to another, a Hydraulic Oil Cooler or example will remove heat from hot oil by using cold water or air. Alternatively a Swimming Pool Heat Exchanger uses hot water from a boiler or solar heated water circuit to heat the pool water. Heat is transferred by conduction through the exchanger materials which separate the mediums being used. A shell and tube heat exchanger passes fluids through and over tubes, where as an air cooled heat exchanger passes cool air through a core of fins to cool a liquid.
 

Stove Pipe Heat ExchangerStove Pipe Heat Exchanger

Heat Exchanger 


Shell and Tube; Shell and Tube Heat Exchangers consist of a large number of small tubes which are located within a cylindrical shell. The tubes are positioned into the cylinder using a tube bundle or "tube stack" which can either have fixed tube plates (permanently fixed to the body) or, in the case of Thermex Heat Exchangers a floating tube stack which allows the tube bundle to expand and contract with varying heat conditions as well as allowing the tube bundle to be easily removed for servicing and maintenance.

Plate Type; Plate Heat Exchangers operate in very much the same way as a shell and tube heat exchanger, using a series of stacked plates rather than tubes. Plate heat exchangers are usually brazed or gasketed depending on the application and fluids being used. Their compact stainless steel construction makes them an ideal choice for use with refrigerants or in food and beverage processing.

Air Cooled; Air Cooled Heat Exchangers are commonly used in vehicles or other mobile applications where no permanent cool water source is available. Thermex designs and supplies combination cooling packs (or combi-coolers) which combine an engine jacket water cooler, oil cooler and charge air cooler into a single unit reducing space requirements and improving efficiency. Cool air is provided either by a fan or by air flow caused by the movement of the vehicle.

 

Designing a Heat Exchanger

 

To be able to select a heat exchanger, we need to know;

  • Primary circuit fluid type, temperature and flow rate (usually the hot fluid)
  • What you want to take out of the primary circuit (Heat dissipation or a target outlet temperature)
  • Secondary circuit fluid type, temperature and flow rate (usually the coolant)

The fields above are only the basics. When putting an enquiry together you should also make Thermex aware of any pressure loss limitations and any other special requirements.

Please click here to download the Thermex data sheet template which highlights the required fields for heat exchanger selection. The data sheet should also be saved and sent to us if you require a quotation for a heat exchanger.
Stove Pipe Heat ExchangerStove Pipe Heat ExchangerStove Pipe Heat ExchangerStove Pipe Heat Exchanger
Marine Heat Exchangers


 

The operating principles of a marine heat exchanger are the same as a cooler designed for fresh water use, the main consideration for the designer however is that the marine heat exchanger must be resilient to erosion or corrosion caused by sea water. This means that materials that come in to contact with the sea water must be suitable, such as 90/10 Cupro-Nickel, 70/30 Cupro-Nickel, Bronze and Titanium.

There are other factors which need to be taken in to consideration when a marine heat exchanger is being designed. One is the velocity, if it is too low then there is a risk that sand and other particles will block the tubes. If it is too fast on the other hand then those same particles can rapidly erode the tube plate and tubes.

Additional protection can be provided by installing a sacrificial anode which Thermex can include upon request. This will be installed in to the threaded hole normally used for a drain plug and is in direct contact with the sea water flow.


 

The suitability of a fluid with a heat exchanger will depend on the type of heat exchanger being used and the materials which are available. Standard Thermex Heat Exchangers are suitable for most fluids including Oil, Water, Water Glycol and Sea Water. For more corrosive fluids such as chlorinated salt water, refrigerants and acids other materials such as Stainless Steel and Titanium will need to be used instead.

Stove Pipe Heat ExchangerStove Pipe Heat ExchangerStove Pipe Heat Exchanger

Temperature cross over is a term used to describe the scenario where the temperatures of both circuits in a liquid cooled heat exchanger begin to cross over. This can be an important factor in a heat exchanger design as the efficiency of a cooler will be significantly reduced when the temperatures cross over. In many cases a plate heat exchanger is the best option for applications where temperature cross over can't be avoided.


A Heat Exchanger Pass refers to the movement of a fluid from one end of the heat exchanger to the other. For example, when referring to the "through tubes" circuit (usually the coolant); · Single Pass - Fluid enters one end of the heat exchanger, and exits at the other end. · Double Pass - Fluid enters and exists the heat exchanger at the same end. · Triple Pass - Fluid travels the length of the heat exchanger body three times before exiting. The images below will help to demonstrate this;

 
  • A greater number of passes increases the amount of heat transfer available, but can also lead to high pressure loss and high velocity.
  • With a full set of operational data, Thermex can select the most efficient heat exchanger possible whilst working within the pressure loss and velocity limits.
  • The number of passes on the primary circuit can also be adjusted to optimise thermal performance and efficiency by changing the baffle quantity and pitch.

heat exchanger more efficient.

 

Heat exchanger efficiency can be defined in many ways, in terms of thermal performance there are several key factors to consider;

Temperature differential - As discussed in point 3 (temperature cross-over) the difference between the hot fluid and coolant is very important when designing a heat exchanger. The coolant always needs to be at a lower temperature than the hot fluid. Lower coolant temperatures will take more heat out of the hot fluid than warmer coolant temperatures. If you had a glass of drinking water at room temperature for example, it is much more effective to cool it down using ice rather than just cool water, the same principle applies to heat exchangers.

Flow rate - Another important factor is the flows of the fluids in both the primary and the secondary side of the heat exchanger. A greater flow rate will increase the capability of the exchanger to transfer the heat, but a greater flow rate also means greater mass, which can make it more difficult for the energy to be removed as well as increasing velocity and pressure loss.

Installation - The heat exchanger should always be installed based on a manufacturers' guidelines. Generally speaking the most efficient way to install a heat exchanger is with the fluids flowing in a counter-current arrangement (so if the coolant is travelling left to right, the hot fluid travels right to left) and for shell and tube heat exchangers the coolant should enter at the lowest inlet position (as shown in the diagrams above) to ensure that the heat exchanger is always full of water.


lifetime of a Heat Exchanger


 

Heat exchangers are manufactured from robust materials, have no moving parts and operate at a variety of different pressures and temperatures, therefore if a heat exchanger is used in the correct way then there is no reason why it shouldn't be able to remain operational for many years. To help increase the operational lifetime of a heat exchanger there are several steps that should be taken;

Make sure the design data is accurate - If you are sending data to our engineers for heat exchanger selection, then it is best to make sure that it is as accurate as possible. Not only will this ensure that your heat exchanger is thermally efficient but also that it will be able to operate for a long period of time. If the flow rates are too high then erosion could be a problem, if the pressures are too high then leaks could occur and if there are any unusual chemicals in the fluids (such as acids in coolant water) then please contact us to check the compatibility. If our standard materials aren't suitable then we can usually supply an alternative which is.

4 Types of Heat Exchangers and Applications

A heat exchanger allows the heat from a fluid (liquid or gas) to pass through a second fluid without the two ever coming into direct contact with each other. For example, a heating furnace burns natural gas that is carried over water by pipes. If the gas and the water came into direct contact, the heat exchange would stop and the water would never warm up.Even though all heat exchangers perform the same function, there are different types that have varied applications. Learning about these different heat exchangers will help you determine what the right equipment is for your business. Let's take a look at the 4 types of heat exchangers and their applications below:


 

1. Double Tube Heat Exchangers:

Double tube heat exchangers use what is known as a tube within a tube structure. There are two pipes where one is built inside the other. Just like the example above, one fluid flows through the inner pipe while the second fluid flows around the first fluid in the outer pipe. This type of heat exchanger is known for being the most basic and affordable of all. Its size makes it ideal for tight spaces, allowing for some extra flexibility in the layout of the manufacturing process.

2. Shell and Tube Heat Exchangers:

Out of all the types of heat exchangers, shell and tube heat exchangers are the most versatile. A shell and tube heat exchanger is designed with a number of tubes placed inside a cylindrical shell. The popular design of this type of heat exchanger allows for a wide range of pressures and temperatures. If you need to cool or heat a large amount of fluids or gases, the application of the shell and tube heat exchanger is an option to consider. While smaller in size compared to some of the other types, a shell and tube heat exchanger can be easily broken-down, making cleaning and repairs easy.

Stove Pipe Heat ExchangerStove Pipe Heat ExchangerStove Pipe Heat Exchanger

3. Tube in Tube Heat Exchangers:

Similar to the other types of heat exchangers, a tube in tube heat exchanger is comprised of two tubes, one for each fluid. However, the tubes are coiled together to form an outside and inside pattern. The application for a tube in tube design can get fairly creative. Since the tubes are coiled together, most designs for this type are compact. Applications for a tube in tube heat exchanger center around high temperature and high pressure. Since it runs at a higher output, a tube in tube heat exchanger tends to have greater efficiency.

4. Plate Heat Exchangers:

While all of the types of heat exchangers discussed so far have a similar design, the plate heat exchanger is the exception. Metal plates are used to transfer heat between two fluids. The plate is a metal shell, with spaces inside each plate that act as hallways for fluids to travel through. With a plate heat exchanger, there is a greater surface area in contact with the fluids, so it has better rates of heat transfer compared to all other types. Although plate heat exchangers can be more expensive, the efficiency gained by the design is a big plus. This type of heat exchanger is best used in places like power plants because of its durability and low repair rates.

 






 

Send your message to this supplier

*From:
*To:
*Message:

Enter between 20 to 4,000 characters.

This is not what you are looking for? Post a Sourcing Request Now
Contact Supplier